Multiscale Segmentation of Oil Slick in Sar Images Based on Morphological Pyramid

نویسندگان

  • Thomas F.N. Kanaa
  • J. P. Rudant
چکیده

We propose a new approach based on the Marangoni theory, particularly a dampening of the wave spectra energy. The observation is decomposed into multiscale analysis using a pseudo morphological pyramid, named here as a alternating contextual filter, to improve the detection of local variations of the wave spectrum. The morphological thick gradient contrast is first performed with a varying structuring element. The filtering is balanced by the low pass image. The residue image gives information about the surface energy spectrum in relation to the dispersion equation. Then images generated are merged with the help of fuzzy c-mean algorithm to achieve the segmentation process. The method is tested on ERS2 SAR and ENVISAT ASAR Images. The obtained results are promising and show an improvement of the oil slick detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model

This study focuses on the segmentation and characterization of oil slicks on the sea surface from synthetic aperture radar (SAR) observations. In fact, an increase in viscosity due to oil notably reduces the roughness of the sea surface which plays a major part in the electromagnetic backscattering. So, an oil spill is characterized by low-backscattered energy and appears as a dark patch in a S...

متن کامل

Multiscale Oil Slick Segmentation with Markov Chain Model

A Markov chain model is applied for the segmentation of oil slicks acquired by SAR sensors. Actually, oil slicks have specific impact on ocean wave spectra. Initial wave spectra may be characterized by three kinds of waves, big, medium and small, which correspond physically to gravity and gravitycapillary waves. The increase of viscosity due to the presence of oil damps gravity-capillary waves....

متن کامل

SAR raw signal simulation of oil slicks in ocean environments

Synthetic aperture radar (SAR) raw signal simulation is a powerful tool for design of oil slick detection and interpretation systems. In this paper, the ocean simulation issues are presented, and the main problems relating to the oil presence on the sea surface are treated. Attention is focused on the electromagnetic side of the problem, with care to the sensor signatures, the dielectric, physi...

متن کامل

Monitoring of Crude Oil Spill off the West Coast of the Korean Peninsula Using Sar Images

The nation’s largest maritime oil spill occurred on the west coast of the Korean Peninsula on December 7, 2007. All civilian space-borne SAR sensors including TerraSAR-X, ENVISAT ASAR, RADARSAT-1, ERS-2 SAR, and ALOS PALSAR acquired imageries over the contaminated area. Dark patches observed in these SAR images revealed the presence of oil spills, and showed how wide the spilled area is and how...

متن کامل

Automatic detection of oil spills in ERS SAR images

We present algorithms for the automatic detection of oil spills in SAR images. The developed framework consists of first detecting dark spots in the image, then computing a set of features for each dark spot, before the spot is classified as either an oil slick or a “lookalike” (other oceanographic phenomena which resemble oil slicks). The classification rule is constructed by combining statist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004